GitHub Docs
	All products
	Repositories
		Create & manage repositories

	About repositories
	Creating a new repository
	Create from a template
	Create a template repo
	Issues-only repository
	Duplicating a repository
	Cloning a repository
	Troubleshooting cloning errors
	Renaming a repository
	Transferring a repository
	Deleting a repository

	Manage repository settings

	Customize your repository
	About READMEs
	Licensing a repository
	Social media preview
	Classify with topics
	About code owners
	Repository languages

	Enable features
	Disabling issues
	Disable project boards
	Manage GitHub Actions settings

	Manage repository settings
	Repository visibility
	Manage the forking policy
	Anonymous Git read access
	Email notifications for pushes
	Configure autolinks

	Branches and merges

	Manage branches
	View branches
	Change the default branch
	Delete & restore branches

	Configure PR merges
	About merge methods
	Configure commit squashing
	Configure commit rebasing
	Automatic branch deletion

	Mergeability of PRs
	About protected branches
	Branch protection rule
	Required status checks

	Work with files

	Managing files
	Creating new files
	Add a file
	Move a file
	Edit files
	Renaming a file
	Delete files
	How changed files appear

	Using files
	Track file changes
	Permanent links to files
	Working with non-code files

	Managing large files
	Large files
	Git Large File Storage
	Install Git LFS
	Configure Git LFS
	Collaboration
	Move a file to Git LFS
	Remove files
	Resolve upload failures

	Release projects

	About releases
	Manage releases
	View releases & tags
	Linking to releases
	Comparing releases
	Automate release forms

	View activity and data

	View deployment activity
	About repository graphs
	View repository activity
	View project contributors
	Analyze changes
	Connections between repositories
	Dependency graph
	Explore dependencies

	Archive a repository

	Archiving repositories
	Backing up a repository

English
	English
	简体中文 (Simplified Chinese)
	日本語 (Japanese)
	Español (Spanish)
	Português do Brasil (Portuguese)

No results found.

GitHub Docs

Explore by product
Repositories
	Get started
	Account and profile
	Authentication
	Repositories
	GitHub
	Enterprise administrators
	Billing and payments
	Organizations
	Code security
	GitHub Issues
	GitHub Actions
	GitHub Codespaces
	GitHub Packages
	Search on GitHub
	Developers
	REST API
	GraphQL API
	GitHub CLI
	GitHub Discussions
	GitHub Sponsors
	Building communities
	GitHub Pages
	Education
	GitHub Desktop
	Atom
	Electron
	CodeQL
	npm

English
	English
	简体中文 (Simplified Chinese)
	日本語 (Japanese)
	Español (Spanish)
	Português do Brasil (Portuguese)

This version of GitHub Enterprise was discontinued on 2021-09-23. No patch releases will be made, even for critical security issues. For better performance, improved security, and new features, upgrade to the latest version of GitHub Enterprise.
For help with the upgrade, contact GitHub Enterprise support.

Repositories/Work with files/Using files/Working with non-code files
Article versionEnterprise Server 2.22
	Free, Pro, & Team
	Enterprise Cloud
	Enterprise Server 3.2
	Enterprise Server 3.1
	Enterprise Server 3.0
	Enterprise Server 2.22
	GitHub AE

All Enterprise releases

In this article
	Rendering and diffing images

	3D File Viewer

	Rendering CSV and TSV data

	Rendering PDF documents

	Rendering differences in prose documents

	Mapping geoJSON files on GitHub

	Working with Jupyter Notebook files on GitHub

Working with non-code files

GitHub Enterprise Server supports rendering and diffing in a number of non-code file formats.

Rendering and diffing images

GitHub Enterprise Server can display several common image formats, including PNG, JPG, GIF, PSD, and SVG. In addition to simply displaying them, there are several ways to compare differences between versions of those image formats.'

Note: If you are using the Firefox browser, SVGs on GitHub may not render.

Viewing images

You can directly browse and view images in your repository on your GitHub Enterprise Server instance:

SVGs don't currently support inline scripting or animation.

Viewing differences

You can visually compare images in three different modes: 2-up, swipe, and onion skin.

2-up

2-up is the default mode; it gives you a quick glimpse of both images. In addition, if the image has changed size between versions, the actual dimension change is displayed. This should make it very apparent when things are resized, such as when assets are upgraded to higher resolutions.

Swipe

Swipe lets you view portions of your image side by side. Not sure if colors shifted between different versions? Drag the swipe slider over the area in question and compare the pixels for yourself.

Onion skin

Onion Skin really comes in handy when elements move around by small, hard to notice amounts. Did an icon shift two pixels to the left? Drag the opacity slider back a bit and notice if things move around.

3D File Viewer

GitHub Enterprise Server can host and render 3D files with the .stl extension.

When looking directly at an STL file on GitHub Enterprise Server you can:

	Click and drag to spin the model.
	Right click and drag to translate the view.
	Scroll to zoom in and out.
	Click the different view modes to change the view.

Diffs

When looking at a commit or set of changes which includes an STL file, you'll be able to see a before and after diff of the file.

By default, you'll get a view where everything unchanged is in wireframe. Additions are colored in green, and removed parts are colored in red.

You can also select the Revision Slider option, which lets you use a slider at the top of the file to transition between the current and previous revisions.

Fixing slow performance

If you see this icon in the corner of the viewer, then the WebGL technology is not available on your browser:

WebGL is necessary to take advantage of your computer's hardware to its fullest. We recommend you try browsers like Chrome or Firefox, which ship with WebGL enabled.

Error: "Unable to display"

If your model is invalid, GitHub may not be able to display the file. In addition, files that are larger than 10 MB are too big for GitHub to display.

Embedding your model elsewhere

To display your 3D file elsewhere on the internet, modify this template and place it on any HTML page that supports JavaScript:

<script src="https://embed.github.com/view/3d/<username>/<repo>/<ref>/<path_to_file>"></script>

For example, if your model's URL is github.com/skalnik/secret-bear-clip/blob/master/stl/clip.stl, your embed code would be:

<script src="https://embed.github.com/view/3d/skalnik/secret-bear-clip/master/stl/clip.stl"></script>

By default, the embedded renderer is 420 pixels wide by 620 pixels high, but you can customize the output by passing height and width variables as parameters at the end of the URL, such as ?height=300&width=500.

Note: ref can be a branch or the hash to an individual commit (like 2391ae).

Rendering CSV and TSV data

GitHub supports rendering tabular data in the form of .csv (comma-separated) and .tsv (tab-separated) files.

When viewed, any .csv or .tsv file committed to a repository on your GitHub Enterprise Server instance automatically renders as an interactive table, complete with headers and row numbering. By default, we'll always assume the first row is your header row.

You can link to a particular row by clicking the row number, or select multiple rows by holding down the shift key. Just copy the URL and send it to a friend.

Searching data

If you want to find a certain value in your dataset, you can start typing in the search bar directly above the file. The rows will filter automatically:

Handling errors

Occasionally, you may discover that your CSV or TSV file isn't rendering. In those instances, an error box appears at the bottom of your raw text, suggesting what the error may be.

Common errors include:

	Mismatched column counts. You must have the same number of separators in each row, even if the cell is blank
	Exceeding the file size. Our rendering only works for files up to 512KB. Anything bigger than that slows down the browser.

Rendering PDF documents

GitHub supports rendering of PDF documents.

Currently, links within PDFs are ignored.

Rendering differences in prose documents

Commits and pull requests that include prose documents have the ability to represent those documents with source and rendered views.

The source view shows the raw text that has been typed, while the rendered
view shows how that text would look once it's rendered on GitHub Enterprise Server. For example,
this might be the difference between showing **bold** in Markdown, and bold in the rendered view.

Prose rendering is supported for rendered documents supported by github/markup:

	Markdown
	AsciiDoc
	Textile
	ReStructuredText
	Rdoc
	Org
	Creole
	MediaWiki
	Pod

You can click to see the changes made to the document as part of a commit.

Visualizing attribute changes

We provide a tooltip
describing changes to attributes that, unlike words, would not otherwise be visible in the rendered document. For example, if a link URL changes from one website to
another, we'd show a tooltip like this:

Commenting on changes

Commit comments can only
be added to files within the source view, on a line-by-line basis.

Linking to headers

As with other rendered prose documents,
hovering over a header in your document creates a link icon. You can link readers
of your rendered prose diff to specific sections.

Viewing complex diffs

Some pull requests involve a large number of changes with large, complex documents. When the changes take too long to analyze, GitHub Enterprise Server can't always produce a rendered view of the changes. If this happens, you'll see an error message when you click the rendered button.

You can still use the source view to analyze and comment on changes.

Viewing HTML elements

We don't directly support rendered views of commits to HTML documents. Some formats, such as Markdown, let you embed arbitrary HTML in a document. When these documents are shown on GitHub Enterprise Server, some of that embedded HTML can be shown in a preview, while some (like an embedded YouTube video) cannot.

In general, rendered views of changes to a document containing embedded HTML will show changes to the elements that are supported in GitHub Enterprise Server's view of the document. Changes to documents containing embedded HTML should always be reviewed in both the rendered and source views for completeness.

Mapping geoJSON files on GitHub

GitHub Enterprise Server supports rendering geoJSON and topoJSON map files within GitHub Enterprise Server repositories. Simply commit the file as you would normally using a .geojson or .topojson extension. Files with a .json extension are also supported, but only if type is set to FeatureCollection, GeometryCollection, or topology. Then, navigate to the path of the geoJSON file on GitHub.com.

When you click the paper icon on the right, you'll also see the changes made to that file as part of a commit.

Geometry Types

Maps on GitHub Enterprise Server use Leaflet.js and support all the geometry types outlined in the geoJSON spec (Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection). TopoJSON files should be type "Topology" and adhere to the topoJSON spec.

Styling features

You can customize the way features are displayed, such as specifying a particular color or adding a descriptive icon, by passing additional metadata within the geoJSON object's properties. The options are:

	marker-size - small, medium, or large
	marker-color - valid RGB hex color
	marker-symbol - an icon ID from the Maki project or a single alphanumeric character (a-z or 0-9).
	stroke - color of a polygon edge or line (RGB)
	stroke-opacity - opacity of a polygon edge or line (0.0 - 1.0)
	stroke-width - width of a polygon edge or line
	fill - the color of the interior of a polygon (GRB)
	fill-opacity - the opacity of the interior of a polygon (0.0-1.0)

See version 1.1.0 of the open simplestyle spec for more information.

Embedding your map elsewhere

Want to make your geoJSON map available someplace other than GitHub Enterprise Server? Simply modify this template, and place it in any HTML page that supports javascript (e.g., GitHub Pages):

<script src="https://embed.github.com/view/geojson/<username>/<repo>/<ref>/<path_to_file>"></script>

For example, if your map's URL is github.com/benbalter/dc-wifi-social/blob/master/bars.geojson, your embed code would be:

<script src="https://embed.github.com/view/geojson/benbalter/dc-wifi-social/master/bars.geojson"></script>

By default, the embedded map 420px x 620px, but you can customize the output by passing height and width variables as parameters at the end, such as ?height=300&width=500.

Note: ref can be a branch or the hash to an individual commit (like 2391ae).

Clustering

If your map contains a large number of markers (roughly over 750), GitHub will automatically cluster nearby markers at higher zoom levels. Simply click the cluster or zoom in to see individual markers.

Something's up with the underlying map

The underlying map data (street names, roads, etc.) are driven by OpenStreetMap, a collaborative project to create a free editable map of the world. If you notice something's not quite right, since it's open source, simply sign up and submit a fix.

Troubleshooting

If you're having trouble rendering geoJSON files, ensure you have a valid geoJSON file by running it through a geoJSON linter. If your points aren't appearing where you'd expect (e.g., in the middle of the ocean), it's likely that the data is in a projection which is currently unsupported. Currently, GitHub Enterprise Server only supports the urn:ogc:def:crs:OGC:1.3:CRS84 projection.

Additionally, if your .geojson file is especially large (over 10 MB), it is not possible to render within the browser. If that's the case, you'll generally see a message that looks something like this:

It may still be possible to render the data by converting the .geojson file to TopoJSON, a compression format that, in some cases, can reduce filesize by up to 80%. Of course, you can always break the file into smaller chunks (such as by state or by year), and store the data as multiple files within the repository.

Additional Resources

	Leaflet.js geojson documentation
	MapBox marker-styling documentation
	TopoJSON Wiki

Working with Jupyter Notebook files on GitHub

When you add Jupyter Notebook or IPython Notebook files with a .ipynb extension on your GitHub Enterprise Server instance, they will render as static HTML files in your repository.

The interactive features of the notebook, such as custom JavaScript plots, will not work in your repository on your GitHub Enterprise Server instance. For an example, see Linking and Interactions.ipynb.

To view your Jupyter notebook with JavaScript content rendered or to share your notebook files with others you can use nbviewer. For an example, see Linking and Interactions.ipynb rendered on nbviewer.

To view a fully interactive version of your Jupyter Notebook, you can set up a notebook server locally. For more information, see Jupyter's official documentation.

Troubleshooting

If you're having trouble rendering Jupyter Notebook files in static HTML, you can convert the file locally on the command line by using the nbconvert command:

$ jupyter nbconvert --to html NOTEBOOK-NAME.ipynb

Further reading

	Jupyter Notebook's GitHub repository
	Gallery of Jupyter Notebooks

Still need help?
Ask the GitHub community
Contact support

	© 2021 GitHub, Inc.
	Terms
	Privacy
	Security
	Status
	Help

	Contact GitHub
	Pricing
	Developer API
	Training
	Blog
	About

